1.0 Introduction

This readme file provides information about the GloSSAC data set.

1.1 Description

The GloSSAC (global space-based stratospheric aerosol climatology) data set is gridded data of aerosol measurements taken from primarily

space-based instruments and supplemented by ground and balloon based

measurements. It is a zonal data set in 5-degree latitude spanning 80S

to 80N pseudo-month (1/12th year) bins for the period 1979 - 2016. The

entire period that the data set covers is gap-free, which is achieved

mainly through interpolation in the SAGE periods and a new method of

estimating measurements in the high latitudes.

The change to version 1.1 is solely to correct an error in the way the

CLAES data is incorporated into the long-term data record that caused some

large errors in the lower stratosphere between July 1991 and April 1993.

The version 2.0 is focused on improving the post-SAGE II era (after 2005)

with the goal to mitigate elevated aerosol extinction in the lower stratosphere at mid and high latitudes noted in v1.0 as noted in Thomason et al. (2018). Changes include the use of version 7.0 OSIRIS and

the recently released CALIPSO Lidar Level 3 Stratospheric Aerosol profile

monthly product. Major changes that occurred to version 2.0 is for the

post-SAGEII era data set where we implement a conformance process to

OSIRIS and CALIPSO data that is based on SAGEII/SAGEIII-ISS overlap measurements.

Important changes to version 2.1 includes version changes to individual data

sets used in the post-SAGE II era (after 2005) and a revised

cloud-free method

is used for SAGE III/ISS data. All individual data sets used from 2005 have

undergone version changes and we use

OSIRIS version 7.1, CALIPSO Level 3 stratospheric aerosol profile monthly product

that now includes a minor version change from version 1.0 to 1.01 from July 2020.

Additionally, a revised cloud-screen method is implemented for SAGE III/ISS, which improves the representation of aerosols in the lower

stratosphere in particular, following volcanic/PyroCb events. The revised

cloud-free data for SAGE III/ISS now shows enhancement of
extinction coefficient in

the lower stratosphere following these events.

1.2 Further information

For a more in depth description of the data set please see the accompanying paper at the ASDC website or using the DOI (10.5067/GloSSAC-L3-V1.0).

1.3 Science Representatives

Larry Thomason, Senior Research Scientist NASA Langley Research Center Mail Stop 475 Hampton Virginia 23681-2199

Hampton, Virginia 23681-2199 E-mail: l.w.thomason@nasa.gov

FAX: (757)864-4363 Phone: (757)864-6842

3.0 Dataset File Format

3.1 NetCDF

The NetCDF library is designed to read and write data that has been

structured according to well-defined rules and is easily ported across

various computer platforms. The netCDF interface enables the creation

of self-describing datasets. The GloSSAC data set is created in the $\ensuremath{\mathsf{NetCDF}}$

version 3 and is compliant to the CF 1.6 convention.

For more information about the NetCDF format visit: http://www.unidata.ucar.edu/software/netcdf/docs/

For more information about the CF (Climate and Forecast) 1.6 convention visit: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html

3.2 Reading the netcdf file

Most languages have tools to help read netcdf files. If you are using

IDL we recommend you use the procedure NCDF_BROWSER found at http://www.idlcoyote.com/programs/ncdf_browser.pro. To use the procedure

type: NCDF_BROWSER,<FILENAME>. This will create an easy to read
gui

of the information in the dataset.

3.3 Variables in the GloSSAC file

Glossac_Aerosol_Extinction_Coefficient: this is the main dataset which contains the

aerosol extinction coefficient between 80S to 80N for 1979 to 2020.

Glossac_Aerosol_Extinction_Coefficient_Std,Glossac_Aerosol_Extinction_ Coefficient_median,Glossac_Aerosol_Extinction_Coefficient_flag contain ancillary data about the

Measurements_extinction variable.

High_Altitude_Climatology: Climatology for the high altitudes.
Altitudes: 25 - 39.5km

Stratospheric_Background: Stratospheric background

Caliop_Backscatter_Coefficient_532: Contains all calipso backscatter data at 532 nm. Ancillary data is in the rest of the variables with the Caliop_ prefix

Osiris_Aerosol_Extinction_Coefficient: Contains conformed OSIRIS extinction at 525 and 1020 nm. Ancillary data is
in the rest of the variables with the
Osiris Aerosol Extinction Coefficient prefix

Sageiii_ISS_Aerosol_Extinction_Coefficient: Contains all SAGEIII/ISS data. Ancillary data is

in the rest of the variables with the

wavelengths_caliop,wavelngths_glossac,wavelengths_osiris,wavelengths_S
AGEIII,time,lat,alt,month: these are variables

that correspond to the dimensions used in the variables, which give the

 $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

Dates active in the data set

dimensions used for a variable use the IDL function $\ensuremath{\mathsf{NCDF_DIMINQ}}\xspace$

4.0 Instruments active in the data set

Instrument

SAM II [NASA]	01/1979->09/1984
SAGE [NASA]	02/1979->11/1981
SAGE II [NASA]	10/1984->08/2005
HALOE [NASA]	10/1991->12/1993
CLAES [Lockheed]	10/1991->03/1993
OSIRIS [Canada]	10/2001->12/2020
CALIPSO [NASA]	04/2006->12/2020

SAGE III/ISS [NASA] 06/2017->12/2020

Last Upd	ated: Decemb	er 2021	